05-09【谈 强】腾讯会议 吴文俊数学重点实验室数学物理系列报告之2020-16

发布者:万宏艳发布时间:2021-05-06浏览次数:229

题目: Symplectic_Parabolicity_and_L^2 Symplectic_Harmonic Forms


报告人:谈强,江苏大学


时间:2021年5月9日 (星期日)上午10:00-11:00


腾讯会议 ID:63789593,密码:24680


摘要:In this talk, we consider the symplectic cohomologies and symplectic harmonic forms which introduced by Tseng and Yau. Based on this, we get if $(M^{2n},\omega)$ is a compact symplectic parabolic manifold which satisfies the hard Lefschetz property, then its Euler number satisfies the inequality $(-1)^n\chi(M)\geq 0$. This work joint with T.Huang, H.Y. Wang and J.R.Zhou.